
Final Report

S.A.R.A.H.
Search and Recovery Autonomous Hovercraft

Daniel Collotte

EEL 4665/5666

Intelligent Machines Design Laboratory

TAs: Ryan Stevens

Tim Martin

Josh Weaver

Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

2

Table of Contents

Abstract .. 3

Executive Summary... 3

Introduction .. 3

Integrated System ... 4

Mobile Platform .. 5

Actuation .. 7

Sensors ... 8

List of Sensors ... 8

Gyroscope – IDG500 ... 8

Ultrasonic Rangefinder - LV-EZ2.. 8

Metal Detector – CEN-TECH 97245 ... 9

Behaviors .. 10

Experimental Layout and Results .. 11

Ultrasonic Rangefinder Testing ... 11

Gyroscope Data Acquisition .. 12

Conclusion .. 13

Documentation ... 14

Appendices ... 15

Appendix A: ADC Echo .. 15

Appendix B: Motor Driver ... 16

Appendix C: LED Driver ... 17

Appendix D: Sensor Filtering and Update ... 19

Appendix E: Proportional Drive ... 20

Appendix F: Sensor Data Acquisition .. 21

3

Abstract
Given a straightforward task of building an autonomous robot, I decided to complicate

things by building one that hovers! The result of this was SARAH, an autonomous metal

detecting hovercraft. SARAH uses a gyroscope and two sonars for navigation, and I specify how

these sensors integrate. In addition, I had to implement several novel solutions to problems

revolving around the key requirement to carrying out any inexact science: adjustability. In this

report I specify my design for a skirt attachment gasket, metal detector mount, and balancing

weights- all adjustable.

Executive Summary
SARAH (Search and Recovery Autonomous Hovercraft) is a fully autonomous metal

detecting robot. Once activated, SARAH will randomly roam an area searching for metal, and

upon finding it notifies the user by flashing her lights.

 SARAH is based on a 1” thick, 24” diameter circular wood platform. A “bag” type

hovercraft skirt and lift ring, the aforementioned platform, a skirt gasket, a motor mount, and

electronics harness are sandwiched together to form her. Attached to this platform by a hinge is a

parallel mechanism with a modified metal detector attached to it. Also attached to the front of the

gasket is two LV-EZ2 sonars, which are used for object avoidance.

 SARAH is coded to perform in a pseudo multithreaded manner, employing various

“simultaneously” executing processes as a part of one unified control system, with each process

having a clear and distinct purpose from the others.

 In order to notify the user when metal is detected, I developed a custom RGB LED driver

based on 74HC’595 shift registers. This, along with custom driver functions allows me to

independently control the lights, and consequentially what data the user is provided with through

color and light codes.

Introduction
SARAH is an autonomous metal searching hovercraft- she searches an area in a random

search pattern, using sonar and a gyroscope to avoid objects and control it’s movement. Her

creation was inspired by the timeless image of the beachfront metal detector junkie; the type of

person who might spend hours walking around, metal detector in hand, hoping for the find of

their life. Now, perhaps, our fanatic may sit back and enjoy a tasty beverage while a robot does

all the work. However, SARAH is not all fun and games. During her creation, it became clear

she might also find a more noble cause- landmines injure and kill many people every year [1],

but if scaled up, SARAH could help fight that. Even one or two car-sized SARAHs would be

able to assist in finding and clearing out a considerable number of mines in an affected area.

Because SARAH floats, she would not trigger any of them.

4

Integrated System
SARAH is designed to rapidly react to sensor data in order to scan an area for metal

while avoiding obstacles, and notify the user when it discovers some. The main components of

the system are three Rule 240 bilge blowers, a Sabertooth 1.0 motor driver, an Epiphany DIY

board (Xmega64A1), an IDG500 gyroscope, a custom LED driver, and a CEN-TECH 97245

metal detector.

Figure 1 – Block diagram of SARAH’s components.

SARAH has four processes that run in a pseudo-multithreaded manner; (1) the sensor

process, which reads in the latest value from the sensors (sonar and gyroscope), and calculates

averaged values which other processes may use, (2) the main process, which constantly checks

these sensor values and adjusts the motors accordingly, (3) the metal detection process, which

assumes control whenever metal is detected, and (4) the velocity minimization process, which

puffs air in reverse whenever SARAH gains too much speed.

5

Mobile Platform
SARAH is constructed on a circular hovering platform 24” in diameter, inspired by the

common “science project” bag skirt hovercraft [2]. All components of SARAH are mounted in

an approximate balance around the center of lift. In addition, two Velcro strips are placed at the

rear of the robot so that lead fishing weights (Figure 2) may be fixed as needed for balance.

Figure 2 - 8oz lead fishing weights used to balance SARAH.

The platform’s hover skirt (Figure 3) is constructed from windproof ripstop nylon used in

the construction of kites. The skirt is attached to the platform by means of a custom-designed

circular retainer.(Figure 4) The retainer’s underside has standard household rubber weather-strip,

which helps seal the skirt. Normally skirts on hovercraft of this design are attached by staples,

but this design was chosen so that the skirt could be “tightened” and pulled in. I was unsure of

the performance of various skirt heights, and this method allowed me to quickly and non-

irreversibly attach the skirt to find the optimal height.

Figure 3 - Construction of the bag skirt.

6

Figure 4 - Skirt gasket without rubber seal.

The hovering design allows SARAH to cover a flat long area, even low density ground,

with relative ease and speed compared to a human searching for similar objects with a handheld

metal detector.

Figure 5 - SARAH

The CEN-TECH metal detecting module is mounted on a parallel mechanism on the front

of the robot, allowing for the height to be adjusted relative to the inflated height of the robot. In

addition, the parallel mechanism is attached by a hinge to the main robot platform, allowing it to

flex when the skirt is deflated. The hinge is also important because it provides lee-way when
striking uneven terrain (or a wall) and the robot will less likely suffer damage.

Power is provided by a high continuous current discharge Lithium Polymer battery, rated

at 11.1V 2200mAh 25C.

7

Actuation
Lift is provided by a powerful 4” diameter Rule 240 bilge blower, which provides 235

CFM when running at 12V @ 4.3A. Thrust is provided by two of the same blowers, mounted

along the diameter of the platform on opposing sides. When metal is detected SARAH will stop

over it and flash her lights to notify you there is metal underneath it, and then resume her search.

The lift blower is permanently wired to the power, whereas the thrust blowers are

controlled through the Sabertooth motor driver, which was necessary because the Epiphany

DIY’s onboard motor drivers cannot provide enough start-up current, despite technically being

capable of the necessary continuous current. The Sabertooth is controlled via serial

communication. (Appendix B: Motor Driver)

In the interest of not dealing with wireless communication, SARAH provides feedback on all her

actions using four RGB (Red, Green, Blue) Light Emitting Diodes, driven by custom software

(Appendix C: LED Driver) and hardware. (Figure 6)

Figure 6 - LED Driver Schematic.

Interesting Note: The LED driver is based on a design originally intended by me for

use in a disco dance floor!

8

Sensors
List of Sensors

1. IDG500 (2 axis gyroscope)

2. Maxbotix LV-EZ2 (ultrasonic rangefinder)

3. CEN-TECH 97245 (metal detector)

Gyroscope – IDG500

Application

SARAH uses the yaw information from the gyroscope to prevent wild spins, or what I like to call

“chaotic conditions.” When a chaotic condition is encountered (ex: Something is grazed or snags

the parallel mechanism, sending SARAH into a wild spin), the yaw information allows SARAH

to minimize spin, attempt to recover, and continue scanning.

Theory

The gyroscope uses a lithographically constructed MicroElectroMechanical System (MEMS)

which vibrates. Similar to a Foucault pendulum, the vibrating MEMS structure appears to move

relative to the reference frame of detector MEMS apparatus, allowing rotation in a plane to be

detected.

Software
See Appendix D: Sensor Filtering and Update

Performance

We can see below in Experimental Layout and Results, Figure 10 that although this gyroscope

provides fairly noisy data, a simple running average filter dramatically increases its usefulness.

(Also note the poor performance of a MEMS accelerometer, which was removed from SARAH

in a later design revision.)

References

 Vendor: InvenSense (http://invensense.com/mems/gyro/idg500.html)

 Part #: IDG-500

 Phone: (408)-988-7339

Ultrasonic Rangefinder - LV-EZ2

Application
The LV-EZ2 ultrasonic rangefinder offers a relatively wide field of detection (nearly the width of

SARAH). Two of these in a “daisy chain” configuration [3] are used to provide SARAH with

object avoidance capabilities.

http://invensense.com/mems/gyro/idg500.html

9

Theory
The LV-EZ2 calculates the range of an object in front of it by sending out an ultrasonic “click”

and then immediately listening for its echo. Bats use the same principle, echolocation, to

supplement their poor eyesight. The sensor does this many times per second and provides an

analog voltage corresponding to the distance. The claimed scaling factor is Vcc/512 which would

give a resolution of ~9.8mV/in on a 5V supply. [4]

Software
See Appendix D: Sensor Filtering and Update

Performance

We can see below (Figure 7) that the LV-EZ2 provides a linear response within its operational

range of twenty feet. Filtering this data removes any erroneous values.

Figure 7 - Performance of the LV-EZ2 ultrasonic rangefinder.

References

 Vendor: Maxbotix (http://www.maxbotix.com/products/LV.htm)

 Part #: LV-EZ2

 Phone: (218)-454-0766

Metal Detector – CEN-TECH 97245

Application

This sensor will be used to find metal objects. When scaled up, this would even enable me to

search for treasure or land-mines.

Theory

The metal detector I modified operates on the theory of beat frequency oscillation. It utilizes two

coils tuned to oscillate near the same frequency: a search coil and a reference coil. These two

0

500

1000

1500

2000

2500

0 10 20 30

ADC Register Value vs. Distance

ADC Register
Value

Linear (ADC
Register Value)

http://www.maxbotix.com/products/LV.htm

10

oscillators are summed and passed through a low pass filter. Normally, the output has no signal,

but when a metal object disturbs the search oscillator, a signal is produced.

Software

No special software is needed, as the metal detector has been modified to trigger at TTL voltage

levels. The buzzer (labeled “BZ” in Figure 8 below) was removed and replaced with a simple

resistive divider, providing a TTL low level when triggered. (Normally, the circuit is pulled

high.)

Figure 8 - Internals of the CEN-TECH 97247

Performance
 The metal detector has an effective detection distance of ~2” from its search and reference coils.

This was tested using 1/32” copper sheet, and 1/16” stainless steel sheet.

Behaviors
SARAH uses a random search pattern, created through stochastic interactions with the

environment, to scan a wide flat area for metal objects, and notify the user where they are. When

an obstacle is encountered, SARAH makes her best effort to turn and hover away from the

obstacle. Once a proximity threshold is passed, SARAH’s turn response is inversely proportional

to the distance from the obstacle (Appendix E: Proportional Drive).

11

Experimental Layout and Results
Ultrasonic Rangefinder Testing

Objective
The objective of this experiment was to determine what ADC register values are created by

various distances detected by the ultrasonic rangefinder.

Procedure
A measuring tape was used to mark increments of 2.5’ from the ultrasonic rangefinder. Next, a

piece of foam board (Figure 9) was held at each distance, and the ADC register value was noted.

These values (Table 1) were reported using the code in Appendix A.

Figure 9 – The range finding experimental setup.

Table 1 – Reported ADC register values for various

distances.

Distance (feet) ADC Register Value

0 275

2.5 440

5 660

7.5 860

10 1060

12.5 1280

15 1485

17.5 1700

20 2025

22.5 2030

Conclusion
 As noted in the sensor section (Figure 7), the rangefinder has a linear response within its

operational range, and as a result, the actual distance of any object is easy to determine.

12

Gyroscope Data Acquisition

Objective
The objective of this experiment was to gain a subjective “feel” for the sensitivity of the

gyroscope and determine how to put the data it provides to use.

Procedure

A small momentary push button was connected a long wire, and that wire to the Epiphany DIY.

When the button is pushed, SARAH records the eight seconds of data from the gyroscope, and

turns on an LED to indicate that it is indeed recording. When SARAH is done recording, she is

attached via USB to a PC running serial terminal software. The button is then pressed again,

dumping all eight seconds of raw data to the PC. (Appendix F: Sensor Data Acquisition) This

experiment was performed for various torques and moments, providing a satisfactory “feel” of

the gyroscope’s sensitivity.

Figure 10 - Gyroscope and accelerometer data collected from SARAH.

Once this data was acquired, it was imported into Micrsoft Excel and subject to various filters, of

which, the eight-point running average filter provided the most usable data.

Conclusion
Unfortunately, as Figure 10 shows, the gyroscope is in actuality an angular accelerometer, and

cannot be used as I originally wished to use it. I wanted to use it to give SARAH a sense of

which direction to travel, or a reference “straight direction,” so to speak. However it does

provide adequate data, especially after filtering, in order to help SARAH minimize chaotic

conditions.

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

0 2 4 6 8

Yaw

Forward/Backward

Left/Right

Yaw Avg

13

Conclusion
SARAH has achieved the primary goal I set out to achieve- she searches for metal while

the user relaxes. Using sonar and a gyroscope, SARAH is able to navigate randomly, but safely

around a flat area. In such an area, movement is so easy for SARAH that I actually had to write

code to slow her down!

A first prototype always has limitations, and SARAH is no exception. If a surface

undulates too much, SARAH’s skirt will not make a seal with the ground and she will not be

able to move. This can be improved in future versions through the use of a segmented or “finger”

skirt design. Another issue SARAH has is her complete unawareness of velocity, only

acceleration. In a future revision I would try modifying an optical or laser mouse and mounting it

on the bottom of SARAH in order to provide accurate velocity and possibly even displacement

data, which would allow SARAH to move much more gracefully. Finally, although the LEDs are

bright, the user must still be watching the robot to find out when metal is detected. I’d like to

improve this by having SARAH both emit an audible beep and leave some sort of marker at the

location of the metal.

For future students, I’d recommend avoiding MEMS inertial devices, both gyroscopes

and accelerometers. For the purposes of a robot like this, these devices are a waste of resources

and are almost completely useless. I was luck to glean some usefulness from my gyroscope, but I

feel it was far outweighed by the time I spent learning the device.

14

Documentation

[1] M. Newman, "Landmine Casualties," 2006. [Online]. Available:

http://www.worldmapper.org/posters/worldmapper_map290_ver5.pdf. [Accessed 23 April

2012].

[2] W. J. Beaty, "HOVERCRAFT SCIENCE FAIR PROJECT," 1991. [Online]. Available:

http://amasci.com/amateur/hovercft.html. [Accessed 23 April 2012].

[3] MaxBotix Inc., "Chaining MaxSonar Sensors," 27 August 2008. [Online]. Available:

http://www.maxbotix.com/documents/LV_Chaining_Constantly_Looping_AN_Out.pdf.

[Accessed 23 April 2012].

[4] MaxBotix Inc., "MaxBotix Ultrasonic Sensors," 2011. [Online]. Available:

http://www.maxbotix.com/documents/MB1020_Datasheet.pdf. [Accessed 23 April 2012].

15

Appendices
Appendix A: ADC Echo

#include <avr/io.h>
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <util/delay.h>

#include "uart.h"
#include "ADC.h"

int main (void)
{
 board_init();

uartInit(&USARTC0,115200);//USB UART Init
 ADCsInits();
 sei();
 int i;
 while (1)
 {

 for(i=0;i<8;i++)
 {
 fprintf(&USB_str,"ADC channel %d = %d\r\n\r\n",i,analogRead_ADCA(i));
 }

 _delay_ms(100);//delay 100 milliseconds
 }
}

16

Appendix B: Motor Driver

myMotor.h
#ifndef MYMOTOR_H_
#define MYMOTOR_H_

#include <avr/io.h>
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>

#define LEFT 1
#define RIGHT 0
#define FORWARD 1
#define BACKWARD 0
#define STOP 2
#define waitTxD1() while(!(USARTD1_STATUS & USART_DREIF_bm))

void motorSet(char chooseMotor,int speed, char direction);

myMotor.c
#include "myMotor.h"

void motorSet(char chooseMotor,int speed, char direction)
 {
 waitTxD1(); //Wait until Tx buffer is empty
 //Lower 128 bits are left motor, Upper are Right motor
 //1, 128 are forward full
 switch (chooseMotor)
 {
 if (speed > 64)speed=64;
 case LEFT:
 if (direction == FORWARD)
 {
 USARTD1.DATA = (65-speed);
 }
 else
 {
 USARTD1.DATA = (63+speed);
 }
 break;
 case RIGHT:

 if (direction == FORWARD)
 {
 USARTD1.DATA = (193-speed);
 }
 else
 {
 USARTD1.DATA = (191+speed);
 }
 break;
 case STOP:
 USARTD1.DATA = 0;
 break;
 default:
 USARTD1.DATA = 0;
 break;

 }
 }

17

Appendix C: LED Driver

LEDs_595.h
#ifndef LEDS_595_H_
#define LEDS_595_H_

#include <avr/io.h>
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <util/delay.h>

#define RED 0x4
#define GREEN 0x2
#define BLUE 0x1
#define BLACK 0
#define WHITE 0x7
#define YELLOW 0x6
#define MAGENTA 0x5
#define CYAN 0x3

//Will be used in the future to set single LEDs, instead of all 4
volatile unsigned int LED_FRONT;
volatile unsigned int LED_BACK;
volatile unsigned int LED_LEFT;
volatile unsigned int LED_RIGHT;

void led_clk(void); //Clock the shift+storage registers on the 74hc595
void clr_leds(void); //Shifts 0 to all the bits of the driver to blank the LEDs.
void set_leds(unsigned int front_led, unsigned int back_led, unsigned int left_led, unsigned int
right_led); //Used to set the 4 LEDs to different values.
void init_leds(void); //initializes the pins for the LED driver
void update_leds(void); //Update LEDS from global vars.

#endif /* LEDS_595_H_ */

LEDs_595.c
#include "LEDs_595.h"

void led_clk()
{
 PORTD.OUTSET = PIN0_bm;
 _delay_us(1);
 PORTD.OUTCLR = PIN0_bm;
 _delay_us(1);
}

void update_leds(void)
{
 unsigned int output = 0;
 char bm = 0x01;
 int i;
 //output = (front_led<<11) | ((back_led&0x6)<<8) | ((back_led&0x1)<<8) | (left_led<<5) |
(right_led<<1);
 output = (LED_FRONT<<10) | (LED_BACK<<7) | ((LED_LEFT&0x4)<<4) | ((LED_LEFT&0x3)<<3) | LED_RIGHT;
 //printf("%x", output);
 for(i=0;i<13;i++)
 {
 if ((output & bm) == 0)
 {
 PORTD.OUTCLR = PIN1_bm;
 }
 else
 {

18

 PORTD.OUTSET = PIN1_bm;
 }

 output = output>>1;
 _delay_us(1);
 led_clk();
 }
 PORTD.OUTCLR = PIN1_bm;
 led_clk();
 led_clk();
}

void set_leds(unsigned int front_led, unsigned int back_led, unsigned int left_led, unsigned int
right_led)
{
 unsigned int output = 0;
 char bm = 0x01;
 int i;
 //output = (front_led<<11) | ((back_led&0x6)<<8) | ((back_led&0x1)<<8) | (left_led<<5) |
(right_led<<1);
 output = (front_led<<10) | (back_led<<7) | ((left_led&0x4)<<4) | ((left_led&0x3)<<3) | right_led;
 //printf("%x", output);
 for(i=0;i<13;i++)
 {
 if ((output & bm) == 0)
 {
 PORTD.OUTCLR = PIN1_bm;
 }
 else
 {
 PORTD.OUTSET = PIN1_bm;
 }

 output = output>>1;
 _delay_us(1);
 led_clk();
 }
 PORTD.OUTCLR = PIN1_bm;
 led_clk();
 led_clk();
}

void clr_leds()
{
 int i;
 PORTD.OUTCLR = PIN1_bm;
 for (i=0;i<17;i++)
 {
 led_clk();
 }
}

void init_leds()
{
 PORTD.DIRSET = PIN0_bm | PIN1_bm;
}

19

Appendix D: Sensor Filtering and Update

Note: This code is placed in a 40ms timer interrupt.
 printf("Interrupt FIRED!\n\r");
 printf("RAW L/R = %d|%d\r\n", analogRead_ADCA(1), analogRead_ADCA(2));
 int i, temp;
 rangeDataL[rangeIndexL] = analogRead_ADCA(1);
 rangeIndexL++;
 if (rangeIndexL==8) rangeIndexL = 0;
 temp = 0;
 for (i=0;i<8;i++)
 {
 temp += rangeDataL[i];
 }
 rangeAvgL = temp>>3;

 rangeDataR[rangeIndexR] = analogRead_ADCA(2);
 rangeIndexR++;
 if (rangeIndexR==8) rangeIndexR = 0;
 temp = 0;
 for (i=0;i<8;i++)
 {
 temp += rangeDataR[i];
 }
 rangeAvgR = temp>>3;

 YawData[YawIndex] = analogRead_ADCA(4);
 YawIndex++;
 if (YawIndex==8) YawIndex = 0;
 temp = 0;
 for (i=0;i<8;i++)
 {
 temp += YawData[i];
 }
 YawAvg = temp>>3;

 metalSense = analogRead_ADCA(0);
 printf("L = %d, R = %d, Y = %d, Metal = %d\r\n", rangeAvgL, rangeAvgR, YawAvg, metalSense);

20

Appendix E: Proportional Drive

Note: This code is executes a maximum of once every 10 ms, and is meant to be placed in an

infinite main loop.
 //Movement code
 if ((rangeAvgR <= Range_t) || (rangeAvgL <= Range_t))
 {
 TCD1.CTRLA = TC_CLKSEL_OFF_gc;
 TCD1.CNT = 0;

 //LEDs
 if (rangeAvgL < 280) //488 = 3 ft
 {
 LED_LEFT = RED;
 }
 else if(rangeAvgL < Range_t)
 {
 LED_LEFT = YELLOW;
 }

 if (rangeAvgR < 280) //488 = 3 ft
 {
 LED_RIGHT = RED;
 }
 else if(rangeAvgR < Range_t)
 {
 LED_RIGHT = YELLOW;
 }
 //end LEDs

 if(rangeAvgL > rangeAvgR)
 {
 motorSet(LEFT, 45+(Turn_power-((rangeAvgR-250)/(Range_t/Turn_power))),
BACKWARD);
 motorSet(RIGHT, 45+(Turn_power-((rangeAvgR-250)/(Range_t/Turn_power))),
FORWARD);
 }
 else
 {
 motorSet(RIGHT, 45+(Turn_power-((rangeAvgL-250)/(Range_t/Turn_power))),
BACKWARD);
 motorSet(LEFT, 45+(Turn_power-((rangeAvgL-250)/(Range_t/Turn_power))),
FORWARD);
 }
 }
 else
 {

 LED_FRONT = GREEN;
 LED_BACK = GREEN;
 LED_LEFT = BLACK;
 LED_RIGHT = BLACK;

 motorSet(LEFT, 48, FORWARD);
 motorSet(RIGHT, 48, FORWARD);

 TCD1.CTRLA = TC_CLKSEL_DIV1024_gc;
 }
 update_leds();
 LED_FRONT = GREEN;
 LED_BACK = GREEN;
 LED_LEFT = BLACK;
 LED_RIGHT = BLACK;
 _delay_ms(10);

21

Appendix F: Sensor Data Acquisition

#include <avr/io.h>
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <util/delay.h>

#include "uart.h"
#include "ADC.h"
#include "myMotor.h"

#define DbLedOn() (PORTR.OUTCLR = 0x02) //Turns the debug led on. The led is
connected with inverted logic
#define DbLedOff() (PORTR.OUTSET = 0x02) //Turns the debug led off. The led is
connected with inverted logic
#define DbLedToggle() (PORTR.OUTTGL = 0x02) //Toggles the debug led off. The led is
connected with inverted logic

#define SAMPLES 400
#define SAMPLERATE 5 //in ms, total time of samples*samplerate

#define MOTORTEST //If defined, powers the motors during the test

int main (void)
{
 board_init();
 DbLedOn();
 uartInit(&USARTC0,115200);
 uartInit(&USARTD1, 19200);
 ADCsInits();
 stdout = &uartC0_str;
 sei();
 int i;
 int j=3;
 char check = 0;
 int sensorData[SAMPLES][3] = {0};
 DbLedOff();
 PORTD.DIRCLR = 0x01;
 PORTD.PIN0CTRL = 0x10;
 PORTD.DIRSET = PIN0_bm;

 motorSet(STOP, 1 , 1);

 while (1)
 {
 if(PORTD.IN & PIN0_bm)
 {
 #ifdef MOTORTEST
 motorSet(LEFT, 50, FORWARD); //Included only in forward/backward push tests
 motorSet(RIGHT, 50, FORWARD); //Included only in forward/backward push tests
 #endif

 DbLedToggle();
 for (i=0;i<SAMPLES;i++)
 {
 #ifdef MOTORTEST
 if (i==(SAMPLES/2)) //Included only
in forward/backward push tests
 { //
 motorSet(STOP, 1 , 1); //
 } //

22

 #endif

 sensorData[i][0] = analogRead_ADCA(4); //Yaw norm: ~1130
 sensorData[i][1] = analogRead_ADCA(6); //Forward/back
 sensorData[i][2] = analogRead_ADCA(7); //Left/right
 _delay_ms(SAMPLERATE);
 //Acquire 200 points of data, each channel
 }
 check = 1;
 DbLedToggle();
 while (check != 0)
 {
 //wait for another button press, then print the data serially.
 if (PORTD.IN & PIN0_bm)
 {
 DbLedToggle();
 fprintf(&USB_str,"TIME(ms) , YAW , FB , LR \r\n");
 for (i=0;i<SAMPLES;i++)
 {
 fprintf(&USB_str,"%d , %d , %d ,
%d\r\n",i*SAMPLERATE,sensorData[i][0], sensorData[i][1], sensorData[i][2]);
 }
 check = 0;
 j++;
 DbLedToggle();
 }
 }
 }

 }

}

